Python中的列表生成式与生成器学习教程
这篇文章主要介绍了Python中的列表生成式与生成器学习教程,Python中的Generator生成器比列表生成式功能更为强大,需要的朋友可以参考下
列表生成式
即创建列表的方式,最笨的方法就是写循环逐个生成,前面也介绍过可以使用range()函数来生成,不过只能生成线性列表,下面看看更为高级的生成方式:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。
你甚至可以在后面加上if判断:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
循环嵌套,全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
看一个简单应用,列出当前目录下所有文件和目录:
>>> import os
>>> [d for d in os.listdir('.')]
['README.md', '.git', 'image', 'os', 'lib', 'sublime-imfix', 'src']
前面也说过Python里循环中可以同时引用两个变量,所以生成变量也可以:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.iteritems()]
['y=B', 'x=A', 'z=C']
也可以通过一个list生成另一个list,例如把一个list中所有字符串变为小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
但是这里有个问题,list中如果有其他非字符串类型,那么lower()会报错,解决办法:
>>> L = ['Hello', 'World', 'IBM', 'Apple', 12, 34]
>>> [s.lower() if isinstance(s,str) else s for s in L]
['hello', 'world', 'ibm', 'apple', 12, 34]
此外,列表生成式还有许多神奇用法,说明请看注释:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
list(range(1, 11))
# 生成1乘1,2乘2...10乘10
L = []
for x in range(1, 11):
L.append(x * x)
# 上面太麻烦,看下面
[x * x for x in range(1, 11)]
# [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
# 加上if,就可以筛选出仅偶数的平方
[x * x for x in range(1, 11) if x % 2 == 0]
# [4, 16, 36, 64, 100]
# 两层循环,可以生成全排列
[m + n for m in 'ABC' for n in 'XYZ']
# ['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
# 列出当前目录下的所有文件和目录名
import os
[d for d in os.listdir('.')] # on.listdir可以列出文件和目录
# 列表生成式也可以使用两个变量来生成list:
d = {'x': 'A', 'y': 'B', 'z': 'C'}
[k + '=' + v for k, v in d.items()]
# ['x=A', 'z=C', 'y=B']
# 把一个list中所有的字符串变成小写
L = ['Hello', 'World', 'IBM', 'Apple']
[s.lower() for s in L]
# ['hello', 'world', 'ibm', 'apple']
L1 = ['Hello', 'World', 18, 'Apple', None]
L2 = [s.lower() for s in L1 if isinstance(s, str)]
print(L2)
# ['hello', 'world', 'apple']
# isinstance函数可以判断一个变量是不是字符串
生成器
列表生成式虽然强大,但是也会有一个问题,当我们想生成一个很大的列表时,会非常耗时,并且占用很大的存储空间,关键是这里面的元素可能你只需要用到前面很少的一部分,大部分的空间和时间都浪费了。Python提供了一种边计算边使用的机制,称为生成器(Generator),创建一个Generator最简单的方法就是把[]改为():
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x7fe73eb85cd0>
如果要一个一个打印出来,可以通过generator的next()方法:
>>> g.next()
0
>>> g.next()
1
>>> g.next()
4
>>> g.next()
9
>>> g.next()
16
>>> g.next()
25
>>> g.next()
36
>>> g.next()
49
>>> g.next()
64
>>> g.next()
81
>>> g.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
其实generator object也是可迭代的,所以可以用循环打印,还不会报错。
>>> g = (x * x for x in range(10))
>>> for n in g:
... print n
...
这是简单的推算算法,但是如果算法比较复杂,写在()里就不太合适了,我们可以换一种方式,使用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, …
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print b
a, b = b, a + b
n = n + 1
上面的函数可以输出斐波那契数列的前N个数,这个也是通过前面的数推算出后面的,所以可以把函数变成generator object,只需要把print b改为yield b即可。
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
如果一个函数定义中包含了yield关键字,这个函数就不在是普通函数,而是一个generator object。
>>> fib(6)
<generator object fib at 0x7fa1c3fcdaf0>
>>> fib(6).next()
1
所以要想调用这个函数,需要使用next()函数,并且遇到yield语句返回(可以把yield理解为return):
def odd():
print 'step 1'
yield 1
print 'step 2'
yield 3
print 'step 3'
yield 5
看看调用输出结果:
>>> o = odd()
>>> o.next()
step 1
1
>>> o.next()
step 2
3
>>> o.next()
step 3
5
>>> o.next()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
同样也可以改为for循环语句输出。例如:
def odd():
print 'step 1'
yield 1
print 'step 2'
yield 2
print 'step 3'
yield 3
if __name__ == '__main__':
o = odd()
while True:
try:
print o.next()
except:
break
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16