企业大数据的实施要循序渐进
大数据带来的强大功能令人难以抗拒,它承诺将规模庞大且持续增长的数据转化为能为企业所利用的、涉及业务方方面面的宝贵情报。然而,这种诱惑的背后同样可能存在陷阱;如果不做详尽规划,技术消费很可能成为拖累企业的沉重包袱。
"大数据常常也带来巨大的消费风险,"NPI公益发展组织的IT采购管理顾问Jeff Muscarella指出。Muscarella警告称,即使是在用户已经对硬件、软件以及服务等内容支付过费用,大数据项目仍然能够轻而易举地带来百万美元级的增项支出。此外,不要被供应商拿出的所谓实际案例所蒙蔽,深入研究你可能会发现这些实例根本不像厂商吹嘘的那么出彩。
"在大部分情况下,只要我们能抽丝剥茧地将案例分解进行调查,就会意识到其中有很多虚假的成分,"他解释道。当然,这并不是说我们不该尝试引入大数据技术,Muscarella补充称。不过企业在着手进行采购之前,务必要深入研究、广泛收集信息。我们当然不应该为了花钱而花钱,只有在大数据项目确实能为业务提升带来帮助的前提下,这样的大动作才有意义。
"这不仅仅是一种新技术,"Muscarella表示。"确切来说,这是一种专为解决那些我们无法确定是否存在的业务问题而衍生的技术,CIO们一定得清楚这一点。目前对于大多数IT领导者来说,大数据究竟能带来哪些好处、其运作机制如何等等仍然是相当陌生的话题,甚至仅仅停留在概念层面。因此在部署之前,决策者必须勇于提问:新技术真能提升效益吗?如何提升、需要多长时间才能见效?在部署工作中,我们需要安排哪些基础设施建设?IT领导者们必须拿出一百二十分的关注度应对这类新项目,只有这样大数据这只"钱老虎"才可能真正为企业带来投资回报。
对待大数据:抛砖引玉、循序渐进
初次探索大数据项目时,千万别一起手就搞得声势浩大、劳民伤财,Muscarella提醒道。最好的方法是用Apache Hadoop这类开源工具先弄个试点案例,看看究竟收效如何。
"谁的钱也不是大风吹来的,所以相信各位一定希望投资能切实见效,"Muscarella指出。"先选一些可管理性较强的工具,小范围验证自己对大数据的认识。举例来说,如果我们的确能从试点案例中发掘到数据的价值、网络点击量的背后意义或者用户的消费习惯,接下来再深入思考如何利用这些结论改善企业的业务流程。"[page]
"千万不要陷入无限升级基础设施的怪圈,这种倾向非常危险,"他补充道。"先验证效果,再回头规划自己的具体实施方案。即使最后的结果证明大家一开始的选择是正确的,我们也不必为搞试点而后悔。毕竟这么做最稳妥、风险最小,明智的管理者绝不会在项目还充满不确定因素时就盲目加大资金投入。"
一旦业务需求核准完毕,接下来我们才能开始讨论大数据项目需要哪些基础设施支持。大数据项目的规模往往以PB、甚至是EB计,因此大家必须保证自己的存储基础设施能够跟上这种庞大的资源需求。Muscarella认为,尽管供应商们总是奉劝用户使用同一家存储服务商的产品以提高设施标准化程度,但他仍然建议我们利用存储虚拟化技术将竞争机制引入产品选择。这样我们不仅能够有效降低风险,更不必劳神于某一家服务商的架构能否适应未来的技术发展趋势。
"不要指望通过一家供应商获得所谓的标准化,"他表示。"最科学的办法是将资源需求分散解决,一部分交给云平台、另一部分交给企业内部的数据中心。总之,一定要让自己手头拥有足够的选择权,否则一旦被套牢,大家很可能就此泥足深陷。"
说到这里,他结合自身经历举了个实例。原先他曾为一家医院处理IT事务,当时院方领导就坚持采用同一家服务供应商的标准化产品。项目初期形势看起来还不错,他告诉我们,然而在经过数年的逐步升级后,院方终于发现自己已经被牢牢套死在同一家供应商手上。尽管到这时产品与服务已经与他们的需求相去甚远,但情况已经无法逆转,供应商已然掌握了所有的主动权。
"可以说,大家手中的备选方案越多,服务所带来的实际效果也就越好,"Muscarella评论道。"因此务必尽量使用多家服务厂商。另外,在确定升级周期等后续细节时,一定要在协议中努力为自己争取权益;只有让供应商明白我们其实随时可以选择其它服务,他们才会尽心竭力、老老实实地支持我们的业务。"
值得一提的是,存储机制同样需要倾注我们的心力与管理策略。首先,确保我们的设备支持费用处于合理的范围;其次是弄清楚存储产品组合方案中淘汰掉的硬件如何处理、采用什么样的周期,并在谈判中努力维护自己的利益、严格控制硬件成本。
在购置数据收集及分析类商务智能软件时,不妨先花点小钱做做评估
数据发掘及商务智能软件与服务在商业实例中经常会用到。也就是说供应商在兜售这类产品时,肯定会列举商业实例;而为了进一步打动企业客户,他们还要"附赠"免费业务分析服务,Muscarella指出。他们会派出几位顾问,对大家的企业环境及业务流程进行为时数天的调查;基本上他们的工作重点就是跟企业决策者聊天,并帮助部门主管了解他们的产品能为日常工作带来哪些提升或者便利。
"这是一帮老手,他们有办法把你哄得开开心心,并乖乖交出钱来,"Muscarella戏谑道。"但实际上这帮营销人士所做的案例分析往往漏洞百出,为了推销自己的产品他们经常夸大实际情况。即使是最厚道的供应商顾问也难免会把过分乐观的假设当成事实讲给我们听。"
他认为,最好的办法是花钱聘请这些供应商顾问或者第三方服务商对业务改善情况进行分析与评估。如此一来,他们就需要对自己的新差事负责,细心寻找案例中模棱两可的部分。而我们则能够从更诚实、更完整的评估结论中了解真实情况。
数据分析咨询请扫描二维码
定制化数据服务在当今数据驱动的世界中扮演着至关重要的角色。这种个性化解决方案不仅提高了企业的数据处理效率,还深刻影响了客 ...
2024-11-28在当今信息时代,数据成为各行各业中不可或缺的资产。然而,数据的真正价值取决于其质量,而数据元作为数据的基本组成部分,在数 ...
2024-11-28在当今信息爆炸的时代,数据被认为是企业成功的关键。然而,仅拥有数据是不够的;必须制定和执行一项坚实的数据战略,以确保数据 ...
2024-11-28数据战略评估的关键在于确保数据管理和应用项目的成功实施。通过建立业务案例、投资模型,并跟踪进度,旨在实现项目目标。这种评 ...
2024-11-28数据战略在客户关系管理(CRM)中扮演着关键角色,通过收集、分析和应用数据,企业能够更好地了解客户需求、提升客户体验,并制 ...
2024-11-28当谈及现代商业和管理中不可或缺的环节时,数据分析与决策支持无疑是其中的焦点。这一关键领域的核心在于通过数据驱动的方式帮助 ...
2024-11-28数据战略实施案例分析涉及数据战略制定、关键实施步骤和成功案例分享。以下案例展示不同企业如何利用数据战略优化运营和提升竞争 ...
2024-11-28数据生命周期管理(Data Lifecycle Management,DLM)是一项关键任务,涵盖了从数据产生到销毁的全过程。在当今数字化时代,数据 ...
2024-11-28数据应用对客户体验的提升 数据应用在提升客户体验方面扮演着关键角色,通过个性化服务、优化客户旅程、实时反馈与改进、增强客 ...
2024-11-28数据分析领域的发展为企业提供了前所未有的机会,同时也呈现出日益增长的挑战。在这个信息爆炸的时代,数据的管理和分析变得至关 ...
2024-11-28数据运维在现代企业中扮演着至关重要的角色,选用合适的工具可以大幅提升生产效率和数据管理质量。在数据运维领域,有很多工具可 ...
2024-11-28企业在制定和执行数据战略时,经常会遇到多种挑战。这些挑战涉及技术、组织、人才以及文化等多个方面,直接影响着数据驱动决策的 ...
2024-11-28数据战略评估是组织为了确定其数据资产价值、制定有效数据管理计划和提高业务绩效而进行的关键过程之一。在当今数字化时代,数据 ...
2024-11-28数据战略在企业的数字化转型过程中扮演着至关重要的角色。它不仅为企业提供了明确的方向和目标,还确保数字化转型的每一步都与企 ...
2024-11-28数据战略在企业数字转型中的关键作用 数据战略在支持企业数字转型中扮演着至关重要的角色。首先,数据战略为企业提供了明确的方 ...
2024-11-28数据战略的重要性 - 数据战略旨在提高数据管理的规范性和效率,支持业务目标的实现和竞争优势的获取。 - 有效实施数据战略需要稳 ...
2024-11-28构建数据基础制度 目标明确 《关于构建数据基础制度更好发挥数据要素作用的意见》提出了构建数据基础制度的目标,包括数据产权 ...
2024-11-28数据质量分析报告是组织和企业决策的关键依据,评估数据可靠性、完整性和准确性。本指南旨在探讨撰写数据质量分析报告的关键步骤 ...
2024-11-28数据质量分析团队的构建是一项复杂而多层次的任务,需要综合考虑各个方面。一个完善的数据质量分析团队旨在确保数据的准确性、完 ...
2024-11-28数据质量对于任何企业或组织而言都至关重要。从大型企业到电商平台再到零售公司,各行各业都在不断努力提升其数据的准确性、完整 ...
2024-11-28