作者:某某白米饭
来源:Python 技术
在写算法的时候,总是要每行每个变量一个个的 debug,有时候还要多写几个 print,一道算法题要花好长时间才能理解。pysnooper 模块可以把在运行中变量值都给打印出来。
pip3 install pysnooper
下面是道简单的力扣算法题作为一个简单的例子
import pysnooper @pysnooper.snoop() def longestCommonPrefix(strs): res = '' for i in zip(*strs): print(i) if len(set(i)) == 1: res += i[0] else break return res if __name__ == 'main': longestCommonPrefix(["flower","flow","flight"])
结果:
3:38:25.863579 call 4 def longestCommonPrefix(strs): 23:38:25.864474 line 5 res = '' New var:....... res = '' 23:38:25.864474 line 6 for i in zip(*strs): New var:....... i = ('f', 'f', 'f') 23:38:25.865479 line 7 print(i) ('f', 'f', 'f') 23:38:25.866471 line 8 if len(set(i))==1: 23:38:25.866471 line 9 res+=i[0] Modified var:.. res = 'f' 23:38:25.866471 line 6 for i in zip(*strs): Modified var:.. i = ('l', 'l', 'l') 23:38:25.866471 line 7 print(i) ('l', 'l', 'l') 23:38:25.867468 line 8 if len(set(i))==1: 23:38:25.867468 line 9 res+=i[0] Modified var:.. res = 'fl' 23:38:25.868476 line 6 for i in zip(*strs): Modified var:.. i = ('o', 'o', 'i') 23:38:25.868476 line 7 print(i) ('o', 'o', 'i') 23:38:25.869463 line 8 if len(set(i))==1: 23:38:25.869463 line 11 break 23:38:25.869463 line 12 return res 23:38:25.869463 return 12 return res Return value:.. 'fl' Elapsed time: 00:00:00.008201
我们可以看到 pysnooper 把整个执行程序都记录了下来,其中包括行号, 行内容,变量的结果等情况,我们很容易的就看懂了这个算法的真实情况。并且不需要再使用 debug 和 print 调试代码。很是省时省力,只需要在方法上面加一行 @pysnooper.snoop()。
pysnooper 包含了多个参数,一起来看看吧
output 默认输出到控制台,设置后输出到文件,在服务器中运行的时候,特定的时间出现代码问题就很容易定位错误了,不然容易抓瞎。小编在实际中已经被这种问题困扰了好几次,每次都掉好多头发。
@pysnooper.snoop('D:pysnooper.log') def longestCommonPrefix(strs):
示例结果:
watch 用来设置跟踪的非局部变量,watch_explode 表示设置的变量都不监控,只监控没设置的变量,正好和 watch 相反。
index = 1 @pysnooper.snoop(watch=('index')) def longestCommonPrefix(strs):
示例结果
没有加 watch 参数
Starting var:.. strs = ['flower', 'flow', 'flight'] 00:12:33.715367 call 5 def longestCommonPrefix(strs): 00:12:33.717324 line 7 res = '' New var:....... res = ''
加了watch 参数,就会有一个 Starting var:.. index
Starting var:.. strs = ['flower', 'flow', 'flight'] Starting var:.. index = 1 00:10:35.151036 call 5 def longestCommonPrefix(strs): 00:10:35.151288 line 7 res = '' New var:....... res = ''
depth 监控函数的深度
@pysnooper.snoop(depth=2) def longestCommonPrefix(strs): otherMethod()
示例结果
Starting var:.. strs = ['flower', 'flow', 'flight'] 00:20:54.059803 call 5 def longestCommonPrefix(strs): 00:20:54.059803 line 6 otherMethod() 00:20:54.060785 call 16 def otherMethod(): 00:20:54.060785 line 17 x = 1 New var:....... x = 1 00:20:54.060785 line 18 x = x + 1 Modified var:.. x = 2 00:20:54.060785 return 18 x = x + 1 Return value:.. None 00:20:54.061782 line 7 res = ''
监控的结果显示,当监控到调用的函数的时候,记录上会加上缩进,并将它的局部变量和返回值打印处理。
prefix 输出内容的前缀
@pysnooper.snoop(prefix='-------------') def longestCommonPrefix(strs):
示例结果
-------------Starting var:.. strs = ['flower', 'flow', 'flight'] -------------00:39:13.986741 call 5 def longestCommonPrefix(strs): -------------00:39:13.987218 line 6 res = ''
relative_time 代码运行的时间
@pysnooper.snoop(relative_time=True) def longestCommonPrefix(strs):
示例结果
Starting var:.. strs = ['flower', 'flow', 'flight'] 00:00:00.000000 call 5 def longestCommonPrefix(strs): 00:00:00.001998 line 6 res = '' New var:....... res = '' 00:00:00.001998 line 7 for i in zip(*strs):
max_variable_length 输出的变量和异常的最大长度,默认是 100 个字符,超过 100 个字符就会被截断,可以设置为 max_variable_length=None 不截断输出
@pysnooper.snoop(max_variable_length=5) def longestCommonPrefix(strs):
示例结果
Starting var:.. strs = [...] 00:56:44.343639 call 5 def longestCommonPrefix(strs): 00:56:44.344696 line 6 res = '' New var:....... res = '' 00:56:44.344696 line 7 for i in zip(*strs): New var:....... i = (...)
本文介绍了怎么使用 pysnooper 工具,pysnooper 不仅可以少一些 debug 和 print,更能帮助理解算法题。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20