如何拥抱大数据时代(1)_数据分析师
中国拥有数据资源优势
记者:对于老百姓而言,大数据还是个新词汇,能否介绍一下大数据产生的时代背景以及目前国内外研究、应用的状况?
袁卫:在上世纪80年代初,就已经有了大数据的概念和相关应用,但是它深入社会和百姓的视野,则是最近几年的事情。2012年,美国政府由白宫牵头,启动了一个“大数据发展计划”,这个计划的推出被视为进入大数据时代的标志性事件,其重要性堪比1992年美国政府推出的“信息高速公路计划”(被视为进入网络时代的标志)。在相似的时间,欧盟各国陆续开放了很多政府数据,日本也启动了一个大数据项目,联合国2012年发布大数据报告,全球掀起了大数据研究和应用的热潮。
大数据的发展,是以网络和计算机技术的高速发展为依托的。1965年英特尔创始人之一的摩尔先生提出,未来的网络计算机发展,大体上每隔1年到2年,等面积集成电路中的晶体管数量将会增加一倍,即计算速度会提高一倍,同等的计算,成本会降低一半。经过近50年的实践,验证了摩尔先生的预测,也就是人们常说的“摩尔定律”。计算机和网络科技的高速发展,使得大量网络数据,包括音频的、视频的、图片的、文本的各种各样的数据,得以保存,并转化为我们可以深入分析的数据。于是,大数据的研究和应用也就水到渠成了。
记者:在大数据这个领域,我们和发达国家的差距大吗?
袁卫:上世纪八九十年代,我们在很多科技领域和国外差距很大,但是进入互联网时代以后,这种状况逐渐改观。进入大数据时代,我们可进一步缩小与美国等科技发达国家的差距,甚至具有后发优势,原因有三个方面:其一,在互联网时代,各种最先进的技术可以快速传播,基本上可以做到全球同步;其二,和微软的操作系统等软件不同,大数据绝大多数软件是开源的,很多网络技术也是公开的,中国的科学技术与教育工作者,只要具有足够的智慧和能力,完全可以追赶甚至在某个领域超过美国;其三,我们在数据资源上具有优势。中国有13.5亿人,13.5亿个活动主体组织了各种社会经济关系,建立起各种社会、网络联系,在各种社会经济活动中产生大量的数据,这些数据是可以充分挖掘的资源。我们起步稍晚,但是具有后发优势,在某些领域甚至可以达到国际先进水平,比如中国推进的智慧城市建设就很不错,还有微信社交平台、阿里小贷等,体现了中国的特色。
统计学科迎来“最好的时期”
记者:您是统计学方面的权威专家。在您看来,大数据对于统计学的发展有何影响?
袁卫:统计学就是数据科学,大数据对统计学的发展影响巨大。我个人认为,大数据对于统计学的发展,既是机遇又是挑战。
说它是机遇,是因为大数据研究和应用会带来大量人才需求,这对统计学的发展是一个巨大的利好,可以说,目前统计学发展正处于历史上最好的时期。这几年,从全国范围看,统计学专业毕业生就业状况都不错,今后会更好。
说它是挑战,是因为大数据可能部分颠覆传统的统计方法。比如有人认为,传统的统计方法讲究抽样,但是大数据使得我们可以对接近总量的数据进行分析,这样进行抽样调查的需求就会减少;还有人认为,传统的统计分析注重因果关系,但大数据情况下,只需明确两者之间有关系即可。另外,过去强调分析的准确性,而在大数据情况下,允许存在一定的误差,等等。
我认为,大数据对统计学带来的上述挑战确实存在,但是不会导致传统抽样调查的需求减少。因为大数据虽然数据量很大,但绝大多数情况下这些大样本都不是随机的,推断总体都有系统偏差,因而抽样调查等统计方法仍然是不可取代的。此外,在很多时候,科研和商业应用、科学决策还是需要进行准确的统计分析的。
从人才培养的角度看,统计学在教学内容、教学方法、人才培养模式等方面需要进行变革,以适应大数据时代的人才素质要求,这是统计学科发展面临的另一挑战。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20