大数据分析学习之路 一、大数据分析的五个基本方面 1,可视化分析 大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够 ...
2017-01-09大数据分析普遍存在的方法及理论有哪些? 现在越来越多的应用涉及大数据,只有通过对大数据的分析才能获取智慧、深入及具价值的信息。大数据拥有四个V的特点:数量(Volume)、速度(Velocity)、多样性(Vari ...
2017-01-08大数据分析软件包含哪些技术? 所谓大数据不仅体现在数量上的庞大,还有涉及到的方面比较广泛,以及计算过程比较的庞大而高效等,大数据分析能够从海量的数据中提取出最有效的信息,在企业的营销中发挥关键性的 ...
2017-01-08如何训练数据分析师的思维能力呢? 一提到数据分析师这个职业,想必思维是被提及最多的一个词。这可能跟数据分析需要动用脑子、思考多,沟通理性有很大关系,让大家感到的错觉。 其实,每个工作都需要用 ...
2017-01-08近些年,互联网公司对数据分析师岗位的需求越来越多,这不是偶然。 过去十多年,中国互联网行业靠着人口红利和流量红利野蛮生长;而随着流量获取成本不断提高、运营效率的不断下降,这种粗放的经营模式已经 ...
2017-01-08不少人后台问我,如何转行做数据分析师,或毕业生怎样入行。我之前的文章都是围绕硬技能来写,这次以我知乎上的一篇答案为基础谈一下软技能。权当做杂谈。 我进入互联网行业完全是零基础,不是数据分析零 ...
2017-01-08数据的无量纲化处理和标准化处理的区别是什么 请教:两者除了方法上有所不同外,在其他方面还有什么区别? 解答: 标准化处理方法是无量纲化处理的一种方法。除此之外,还有相对化处理方法(包括初值 ...
2017-01-07如何用spss进行效度检验 有没有效度检验的操作? 效度验证对于量表而言。有很多啊,内容效度的判断主要是你的项目来源,如果来自于信效度很好的量表或者经过专家评判说明具有较好的内容效度。然后是结构效 ...
2017-01-07转行数据分析师必学技能 第一步:统计概率理论基础 这是重中之重,千里之台,起于垒土,最重要的就是最下面的那几层。统计思维,统计方法,这里首先是市场调研数据的获取与整理,然后是最简单的描述性分析,其 ...
2017-01-07数据分析与数据挖掘,你了解多少 1.数据挖掘与数据分析在实际工作中,真的有很大区别甚至是区别吗?我知道一些定义,比如数据分析偏重于统计,而数据挖掘的工作是分类,聚类,是信息的提炼,但是实际工作中是不 ...
2017-01-07学数据分析有没有前途 数据分析这个行业想要追逐经济发展潮流是很容易,对于现在的企业发展而言,数据将成为更为重要的核心资产,而IT设备不再重要。为什么企业将数据放在第一位,将IT数据放在第二位。 ...
2017-01-07数据分析常用的图表方法有哪些 数据分析是一个比较注重结果的工作,数据分析结果的展现直接反映一个数据分析师工作的成效。最常用的的数据分析结果展现方法就是图标展现,既客观又有说服力。经小编整理,常用的 ...
2017-01-07四种中介效应分析_spss中介效应结果分析 1.中介效应分析概述 中介效应分析广泛用于社会科学研究(Wood, Goodman, Beckmann, & Cook, 2008),如心理学(MacKinnon, Fairchild, &Fritz, 2007; Rucker, Preache ...
2017-01-06如何在STATA中做格兰杰因果关系检验 格兰杰因果检验相关的stata命令可以有三种。 方法一: reg y L.y L.x (滞后1 期) estat ic (显示AIC 与BIC 取值,以便选择最佳滞后期) reg y L.y L.x L2.y L2.x ...
2017-01-06如何用SPSS检验多重共线性_多重共线性处理方法 我也在弄这个 目前用的STATA的coldiag2的方法 虽然之前用spearman相关系数看了一下 没问题 但是coldiag2的条件数200+ = = 现在打算主成分+人工扔掉一些… 不知大 ...
2017-01-06分析stata多元线性回归结果_stata多元线性回归 对t p>[t] F R^2 置信区间的值做出相应解释 因变量是新生儿体重birth weight 主题是产前护理及父母恶习对新生儿健康的影响 此外hypothesis假设应该怎么写. ...
2017-01-06stata线性回归分析_stata线性回归 总体平方和残差平方和,解释平方和 ,F检验值 F检验P值 判定系数 调整判定系数 均方根误差 变量系数 标准误差 t检验值 t检验P值 置信区间 这些值怎么看????专业老师让我 ...
2017-01-06Python logging模块详解_python logging模块 简单将日志打印到屏幕: import logging logging.debug(\'debug message\') logging.info(\'info message\') logging.warning(\'warning message\') logging.err ...
2017-01-05spss:已知F和sig值_方差齐性 sig_如何判断方差齐性_怎么判断方差齐不齐 用spss做两个独立样本的t检验,首先得到Levene的结果是 F=0.063,Sig=0.806 Q1:据说只用Sig(p)值判断,如果大于0.05,就是方差 ...
2017-01-05spss稳健性检验步骤_稳健性检验的方法spss_spss稳健性检验怎么做 SPSS中进行稳健性检验一般都用什么方法 稳健性估计一般针对于异方差的,SPSS要处理异方差要先对构建的模型进行诊断,看散点图虽然直观但有时 ...
2017-01-05Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29