K近邻的距离度量表示法 我们看到,K近邻算法的核心在于找到实例点的邻居,这个时候,问题就接踵而至了,如何找到邻居,邻居的判定标准是什么,用什么来度量。这一系列问题便是下面要讲的距离度量表示 ...
2014-11-29什么是K近邻算法_数据分析师 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居 ...
2014-11-29数据挖掘中所需的概率论Landon的推导(九)_数据分析师 Landon的推导(1941) 第三条道是一位电气工程师,Vernon D. Landon 给出的。1941年,Landon 研究通信电路中的噪声电压,通过分析经验数据他发 ...
2014-11-29数据挖掘中所需的概率论与数理统计知识(十) 正态分布和最大熵 还有一条小径是基于最大熵原理的,物理学家E.T.Jaynes在最大熵原理上有非常重要的贡献,他在《概率论沉思录》里面对这个方法有描述和 ...
2014-11-29数据挖掘中所需的概率论(八)Herschel(1850)和麦克斯韦(1860)的推导 Herschel(1850)和麦克斯韦(1860)的推导 第二条小径是天文学家John Hershcel和物理学家麦克斯韦(Maxwell)发现的。1850年,天文 ...
2014-11-29数据挖掘中所需的概率论 高斯的推导(七)数据分析师 论道正态,正态分布的4大数学推导 如本blog内之前所说:凡是涉及到要证明的东西.理论,便一般不是怎么好惹的东西。绝大部分时候,看懂一个东西不难, ...
2014-11-29数据挖掘中所需的概率论与数理统计知识(六 ) 高斯导出误差正态分布 事实上,棣莫弗早在1730年~1733年间便已从二项分布逼近的途径得到了正态密度函数的形式,到了1780年后,拉普拉斯也推出了中心极 ...
2014-11-29数据挖掘中所需的概率论与数理统计知识(五) 拉普拉斯的工作 在1772-1774年间,拉普拉斯也加入到了寻找误差分布函数的队伍中。与辛普森不同,拉普拉斯不是先假定一种误差分后去设法证明平均值的优良性 ...
2014-11-29大数据流程处理“三要”“三不要”_数据分析师 大数据时代处理数据的三大转变:要全体不要抽样,要效率不要绝对精确,要相关不要因果。 具体的大数据处理方法确实有很多,但是根据笔者长时间的实践,总结 ...
2014-11-28大数据时代_大数据分析将走向何方_数据分析师 现阶段关于大数据的未来,下一步是什么,我们如何利用数据在更深的层面提取有意义的消费者信息来超越我们现在的程度?最标准的答案是从比以往更 多的设备上实 ...
2014-11-28大数据实践 基础架构先行_数据分析师 大数据被认为是下一个创新、竞争和生产力的前沿,谁率先抓住大数据的先机即意味着能够在未来市场竞争之中取得杆位。当前大数据市场除了传统厂商之外,还同时涌现出一大批 ...
2014-11-28解读让大数据价值圆满实现的四条建议 大数据分析可创造出大量的价值。正如大多数有价值的工作一样,大数据值得我们投入时间和精力去挖掘其中的价值。 基于这种经验,笔者在下方给出了四条建议,用于 ...
2014-11-28【连载5】如何用spss做加权最小二乘回归及岭回归 上一节我们讲到一般多元线性回归的操作方法。本节要介绍的是多元线性回归的其他几种情况。包括适用于含有加权变量的加权最小二乘回归方程等。然后继续讨论上 ...
2014-11-28【连载4】 如何用spss做一般(含虚拟变量)多元线性回归 回归一直是个很重要的主题。因为在数据分析的领域里边,模型重要的也是主要的作用包括两个方面,一是发现,一是预测。而很多时候我们就要通过回归来进 ...
2014-11-28【连载3】如何使用spss做非参数检验 非参数检验是一个相当宏大的命题。由于实际情况的复杂多变,因此非参数检验包括了许多的各种各样的检验方法。之前我们提过,参数检验的使用条件是被检验的样本总体服从正 ...
2014-11-28【连载2】如何用spss做均值比较分析 上一篇文章我们分享了如何用spss做相关性分析,主要包括双变量相关分析,偏相关分析,以及比较偏门的距离相关分析。其中双变量相关分析又包括三种不同的分析方法。如果忘 ...
2014-11-28机器学习-大数据的关键_数据分析师 Splunk的用户大会已经接近尾声。三天时间的会议里,共进行了160多个主题研讨,涵盖了从安全、运营到商业智能,甚至包括物联网,会议中一遍又一遍出现相同的中心主题:大 ...
2014-11-28【连载一】spss中做相关分析 相关分析是很基础的一种分析方法,接触spss的同学很快就会学习到想相关分析。虽然他很基础,但是在做很多高级分析之前,都要进行相关分析。这篇问文章就系统的和大家分享一下spss ...
2014-11-28Cisco ASA 防火墙 大文件传输问题的解决方法 asa由于在传输大容量文件时,因为连接的时间太长,会time out,可以这样解决。 解决办法: access-list vertas_in extended permit tcp object-group x.x.x. ...
2014-11-28Cisco Pix防火墙 fixup protocol的用途是什么 fixup命令作用是启用,禁止,改变一个服务或协议通过pix防火墙,由fixup命令指定的端口是pix防火墙要侦听的服务。 例1. Pix525(config)#fixup protocol ftp ...
2014-11-28《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21