数据定义的挑战 从数据科学的角度看,这次航天仼务的失利是数据定义没有做好,正所谓“失之毫厘,谬以千里”。数据定义是数据收集和分析的基础,看似简单,想要在实践中做好却并不容易。尤其是在大数据系统中( ...
2016-04-03一、掌握基础、更新知识。 基本技术怎么强调都不过分。这里的术更多是(计算机、统计知识),多年做数据分析、数据挖掘的经历来看、以及业界朋友的交流来看,这点大家深有感触的。 数据库查询—SQL 数据分析师在计算 ...
2016-04-03大数据图数据库之离线挖掘计算模型 对于离线挖掘类图计算而言,目前已经涌现出众多各方面表现优秀而各具特点的实际系统,典型的比如Pregel、Giraph、Hama、PowerGraph、GraphLab、GraphChi等。通过对这些系统的 ...
2016-04-02大数据职位所需的数据场技能 除了报表统计外,还需要对数据的有很强的解读能力。电商中的个性推荐技术,商业与银行中的欺骗检测,智能手机中语音识别等等技术,让我们浑身便散发出大数据与机器学习的各种场信息 ...
2016-04-02一个对象,物理或者虚拟存储的序列。list,tuple,strins,dicttionary,set以及生成器对象都是可迭代的,整型数是不可迭代的。如果你不确定哪个可迭代哪个不可以,你需要用python内建的iter()来帮忙。 我们将要来 ...
2016-04-02大数据分析的几个最佳用例 从外行的角度看来大数据是个挺了不起的东西,它也确实了不起,不过有一个前提就是我们能够有效地处理数据。怎样从海量数据中找出有用的信息才是最重要的。 本文中我们会讲一些大 ...
2016-04-02数据分析师经常遇到的13个问题 1、最早的数据分析可能就报表 目前很多数据分析后的结果,展示的形式很多,有各种图形以及报表,最早的应该是简单的几条数据,然后搞个web页面,展示一下数据。早期可能数 ...
2016-04-02你的大数据分析为何让你失望 许多企业投下数百万美元用于大数据、分析法,并雇用数据分析师,但却感到很受挫。无可否认,他们现在得到了更多、更好的数据。他们的分析师和分析法也是一流的。但经理人对业务的 ...
2016-04-02大数据时代:数据和算法,谁更重要? 我知道很多人自始至终都认为数据是越多越好,即大数据越大越好,Google甚至直言:更多的数据胜过更好的算法,而过去很多侦探剧中崇尚“信息越多,就越靠近真相”的刑侦金句 ...
2016-04-02如何处理数据中的缺失值 现实世界中的数据往往非常杂乱,未经处理的原始数据中某些属性数据缺失是经常出现的情况。另外,在做特征工程时经常会有些样本的某些特征无法求出。路漫漫其修远兮,数据还是要继续挖的 ...
2016-04-01数据挖掘问答精选收藏 1.现在有大数据、精准挖掘、人工智能等这么多概念及技术,它们之间的关系以及企业大数据实施的路线图应该是怎样的? 来自用户 SmartMining 的回答: 大数据、数据挖掘、人工智 ...
2016-04-01市场细分如何帮助你构建更好的预测模型? 但是,这真的有必要吗?我们可不可以创建一个单独的模型和使它含有区融变量作为模型的输入。 这可能可以。特别是根据市场细分创建细分模型可能是一件吃力不讨 ...
2016-04-0110个表明数据科学能力成熟的迹象 通常情况下,我们的业务已经转向为练习组织运作方式的转型——“建设一种能力”意味着建设一种文化来支持和充分利用数据科学。在许多情况下,这种文化的改变能够为世界上的许多 ...
2016-04-01机器学习中的梯度下降法 最优化问题是机器学习算法中非常重要的一部分,几乎每一个机器学习算法的核心都是在处理最优化问题。 本文中我讲介绍一些机器学习领域中常用的且非常掌握的最优化算法,看完本篇文章 ...
2016-04-01用大数据时别辜负了你的大数据分析法 许多企业投下数百万美元用于大数据、分析法,并雇用数据分析家,但却感到很受挫。无可否认,他们现在得到了更多、更好的数据。他们的分析师和分析法也是一流的。但经理人 ...
2016-04-01数据分析与统计推断:线性回归 相关性(correlation) 相关性描述了两个变量之间线性关联的强度,表示符号为R。 属性: 相关系数的幅度(绝对值)测量两个数字变量之间线性关联的强度 相关系数 ...
2016-03-31数据分析(BI商业智能)六大领域 今天的企业,身处一个信息的产生、采集、整合、反馈与决策都空前加速的时代。企业目前在运营管理方面面临的挑战,正如同航空飞行在20世纪后半期喷气发动机技术问世以后,所面 ...
2016-03-31大数据也有分析不了的信息 做决策前可以靠那些数据进行参考,但也别忘记商业建立在信任之上。信任是一种披着情感外衣的互惠主义。在困境中做出正确决策的人和机构能够赢得自尊和他人的尊敬,这种感情上的东西是 ...
2016-03-31本文为CDA作者青菜原创文章,转载请注明来源 编者按:CDA作者青菜将在近期发布「Excel简化办公」系列文章,本文是第四篇;更多精彩请持续关注~ 1.恢复未保存的excel文档 「做了30分钟的客户 ...
2016-03-31数据分析师:数据过大将妨碍分析洞察 大数据对使用者来说看似意味着好的洞察,但过量的数据并不一定带来更好的洞察,统计学家Nate Silver这样认为,他是美国最著名的数据分析师。“数据量越大,人们可以用来证 ...
2016-03-31数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20