大数据基础知识分享 你也可以成为相关专家 作为一名网站工作者,每天都和数据打交道。在与数据相关的知识中,大数据这个概念曾经困扰我很久。在逐渐了解一些基础知识后,我才明白大数据到底是什么,具有有什么 ...
2016-03-09每部电影都有自己的海报,即便是在如今这互联网时代,电影海报仍是一个强大的广告形式。每部电影都会根据自身的主题风格设计海报,精致的电影海报可以吸引人们的注意力。那么问题来了,不同风格的电影海报对颜色有什 ...
2016-03-08三大统计软件:SAS、Stata与SPSS比较 很多人曾问及SAS,Stata三大统计软件:SAS、Stata与SPSS比较 和SPSS之间的不同,它们之中哪个是最好的。可以想到,每个软件都有自己独特的风格,有自己的优缺点。 ...
2016-03-08统计学中为什么要对变量取对数? 对数据做一些变换的目的是它能够让它符合我们所做的假设,使我们能够在已有理论上对其分析。 对数变换(log transformation)是特殊的一种数据变换方式,它可以将一类我们理论上 ...
2016-03-08Hadoop数据操作系统YARN全解析其它 为了能够对集群中的资源进行统一管理和调度,Hadoop 2.0引入了数据操作系统YARN。YARN的引入,大大提高了集群的资源利用率,并降低了集群管理成本。首先,YARN允许多个应用程 ...
2016-03-08决胜大数据的六大要素 每次在为一家企业搭建大数据平台的起步阶段,他们总是向我展示各种他们采用的各种前沿技术,还有他们视若珍宝的数据储备。但是毫不避讳地讲,我根本不想在这个阶段讨论这些方面的细节。 ...
2016-03-08详细解释数据挖掘中的十大算法 在一份调查问卷中,三个独立专家小组投票选出的十大最有影响力的数据挖掘算法,今天我打算用简单的语言来解释一下。 一旦你知道了这些算法是什么、怎么工作、能做什么、在哪 ...
2016-03-08数据挖掘实战训练 问题:如果研究的变量为连续变量,且多种因素对它有影响,本研究共分为四组,并且组间AGE、BMI、BP等差异均具有统计学意义,应该如何校正AGE、BMI、BP等? 这里: Y是连续性变量,我们 ...
2016-03-08企业常见的三种数据部门架构优与 问题:为什么传统BI没有达到今天互联网数据应用的高度呢? 在之前的传统BI可能因为这些因素,所以没有达到今天的数据在高度,可能是互联网本身发展的因素,数据对于互联网企 ...
2016-03-07大道至简的数据体系构建 方法 论分析挖掘 很多企业已经意识到,一个系统化的数据体系将是数据化运营的核心支柱。那么,企业该如何清晰地打造自己的数据体系呢?作者将根据多年经验总结用简朴的语言告诉读者一套 ...
2016-03-07使用FineReport报表进行数据可视化分析方法详解 我们在进行了调查普及之后得到的数据是独立的,所以需要对数据进行分析才能体现调查之后我们要知道的情况。下面小编为大家分享一下FineReport报表如何进行 ...
2016-03-07excel怎么设置密码保护?Excel文件添加密码保护教程 众所周知,Excel具有强大的数据处理和数据分析能力,广泛应用于加工学统计及金融统计中。特别是金融统计需要较高的安全性,那么就一定要为Excel文件添 ...
2016-03-07用word制作数据分析图方法介绍 对于刚学数据分析的小白来说,如何用word制作数据分析图是不容易的,下面用简单的介绍一下word如何做数据分析图,希望能对大家有所帮助! 软件名称:Office Word 200 ...
2016-03-07excel表格怎么画趋势线并显示趋势线公式? 先在已经进入大数据时代,数据分析变的越来越重要,excel中添加的趋势线是图表中的一种扩展线,它可以直观的看出数据的趋势,根据实际数据预测未来数据,处理几 ...
2016-03-07目前500强的公司每天可产生超过1GB供网站分析的原始的数据,而对于一些传媒公司来说,数据量往往要大数倍。 大数据比任何时候都谈论的多,因此公司的管理层比以往任何时间都希望通过数据分析得到他们感兴趣的东西, ...
2016-03-07数据处理:离散化好处多-数据分析师 离散化指把连续型数据切分为若干“段”,也称bin,是数据分析中常用的手段。切分的原则有等距,等频,优化,或根据数据特点而定。在营销数据挖掘中,离散化得到普遍采 ...
2016-03-06数据挖掘新手入门必看10个问题 NO.1 Data Mining(数据挖掘) 和统计分析有什么不同? 硬要去区分Data Mining和Statistics的差异其实是没有太大意义的。一般将之定义为Data Mining技术的CART、CHAID或模糊 ...
2016-03-062分钟读懂Hadoop和Spark的异同 谈到大数据,相信大家对Hadoop和Apache Spark这两个名字并不陌生。但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,下面不妨跟我一块看下它们究竟有什么 ...
2016-03-06小数据:理论和架构 大数据是当下最热门的IT主题之一。据麦肯锡的分析,大数据能使信息更透明、能让决策者获得更精确翔实的绩效信息、能针对客户群体提供更准确的定制、能提升组织决策能力、能帮助开发下一代 ...
2016-03-067大板块:组成数据分析师的完整知识结构 作为数据分析师,无论最初的职业定位方向是技术还是业务,最终发到一定阶段后都会承担数据管理的角色。因此,一个具有较高层次的数据分析师需要具备完整的知识结构。 ...
2016-03-06统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22