用Python处理数据集中的缺失值 现实生活中的数据经常存在缺失值。产生缺失值的原因有很多,如观察资料未被记录、数据损坏等。由于很多机器学习算法不支持存在缺失值的数据集,正确处理缺失值就显得比较重要了。 ...
2017-05-18Python做文本挖掘的情感极性分析 「情感极性分析」是对带有感情色彩的主观性文本进行分析、处理、归纳和推理的过程。按照处理文本的类别不同,可分为基于新闻评论的情感分析和基于产品评论的情感分析。其中,前 ...
2017-05-18Python代码在实践过程中的经验总结 关于Python脚本,在具体的实践过程中经常会遇到一些问题,下面将其总结,便于使用。考虑使用 Logger(logger 怎么配置,需要输出哪些信息 — 可以反向考虑,比方说看到这个 lo ...
2017-05-18利用Python,四步掌握机器学习 为了理解和应用机器学习技术,你需要学习 Python 或者 R。这两者都是与 C、Java、PHP 相类似的编程语言。但是,因为 Python 与 R 都比较年轻,而且更加“远离”CPU,所以它们显得 ...
2017-05-18Python 文件I/O 打印到屏幕 最简单的输出方法是用print语句,你可以给它传递零个或多个用逗号隔开的表达式。此函数把你传递的表达式转换成一个字符串表达式,并将结果写到标准输出如下: #!/usr/bin/python # - ...
2017-05-18Python多进程并行编程实践: mpi4py的使用 在高性能计算的项目中我们通常都会使用效率更高的编译型的语言例如C、C++、Fortran等,但是由于Python的灵活性和易用性使得它在发展和验证算法方面备受人们的青睐于是 ...
2017-05-18Python函数式编程,从入门到⎡放弃⎦ 很早以前就听说过了函数式编程,印象中是一种很晦涩难懂的编程模式,但却一直没有去进行了解。 恰好这周组内的周会轮到我主持,一时也没想到要分享什么。灵光一闪,就 ...
2017-05-17Python面试中8个必考问题 1、下面这段代码的输出结果是什么?请解释。 def extendList(val, list=[]): list.append(val) return list list1 = extendList(10) list2 = extendList(123,[]) list3 = extend ...
2017-05-17提高Python运行效率的六个窍门 Python是一门优秀的语言,它能让你在短时间内通过极少量代码就能完成许多操作。不仅如此,它还轻松支持多任务处理,比如多进程。 不喜欢Python的人经常会吐嘈Python运行太慢。 ...
2017-05-17Python函数 “大脑移植” 当我们在Python里定义函数时发生了什么呢? 关键字def有两个功能:它可以创建一个函数对象,然后把这个函数对象赋值给一个变量(即我们的函数名)。所以,当我们编写: Pyth ...
2017-05-17Python之os模块 众所周知,python是一种强大的脚本语言,那么,问题来了,为什么不用python来编写Linux脚本呢?问题的答案就是python有os模块啊!这个os模块能够让你像在Linux命令行中操作文件一样,在python中 ...
2017-05-17用Python多线程实现生产者消费者模式 什么是生产者消费者模式 在软件开发的过程中,经常碰到这样的场景: 某些模块负责生产数据,这些数据由其他模块来负责处理(此处的模块可能是:函数、线程、进程等)。 ...
2017-05-17SPSS编程在Ridit分析中的应用 多样本有序分类资料(或等级资料)我们一般采用非参数检验——H检验(Kruskal-Wallis法),但其结论只得出三组或多组间总的有差别,若要知道两两间是否有差别,则没有Ridit分析只要一 ...
2017-05-16数据挖掘的五个误区 许多成功的企业都发现了围绕着数据挖掘而产生的神话确实就是误解。这些企业没有成为这些误区的牺牲品,而是通过使用数据挖掘技术解决复杂的业务问题来增加利润,获取更大的竞争优势。 实 ...
2017-05-16数据挖掘大企业成功案例少 中小企业需求小 台资餐饮企业\"一茶一座\"在内地发展迅猛,几年下来已经开了34家连锁店,历史数据累积到三千多万条;本土生产型企业\"乐百氏\"的门店几乎已铺遍全国,总部十分重视原 ...
2017-05-16利用WEKA编写数据挖掘算法 WEKA是由新西兰怀卡托大学开发的开源项目。WEKA是由JAVA编写的,并且限制在GNU通用公众证书的条件下发布,可以运行在所有的操作系统中。WEKA工作平台包含能处理所有标准数据挖掘问题 ...
2017-05-16入门级攻略:机器学习 VS. 深度学习 机器学习和深度学习现在很火,你会发现突然间很多人都在谈论它们。如下图所示,机器学习和深度学习的趋势对比(来自Google trend,纵轴表示搜索热度): 本文将会以 ...
2017-05-16Excel数据分析:抽样设计 一、随机数发生器 1. 随机数发生器主要功能 “随机数发生器”分析工具可用几个分布之一产生的独立随机数来填充某个区域。可以通过概率分布来表示总体中的主体特征。例如,可以使 ...
2017-05-16机器学习决策树算法学习笔记 基本概念 决策树是分类算法。 数据类型:数值型和标称型。因为构造算法只适用于标称型,所以数值型数据必须离散化。 工作原理 利用香浓熵找到信息增益最大的特征,按照信息增益最大 ...
2017-05-16如何在SPSS中利用sytax进行典型相关分析 在spss中可以有两种方法来拟合典型相关分析 采用Manova过程来拟合 采用专门提供的宏程序(syntax)进行拟合。 在这里主要介绍syntax的操作步骤。 进行典型相关的变量名称 ...
2017-05-15数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21