做运营必须掌握的数据分析思维,你还敢说不会做数据分析 对于运营数据分析,我相信很多小伙伴会存在以下问题: 面对异常数据经常出现“好像做了什么?好像发生了什么?所以可能造成了影响”的主观臆测? ...
2017-05-12SAS日志检测 以前跑数据集市时,通常是每天自己批量跑,如果每天查看日志非常麻烦。今天给大家分享一段数据日志的检测代码,可以判断是是哪天出错了。如下图所示: [xmy_1487668820/2017-05-05-16-06-49-9355.p ...
2017-05-12基于R语言实现COX模型诊断 一般在建立好Cox模型之后,需要对模型进行诊断。诊断内容包括模型的前提条件,诸如Cox模型的PH假定(比例风险假定),共线性假定等。本篇我们通过合实际例子讲解Cox模型诊断过程,实 ...
2017-05-11R语言之grep函数和正则通配符查 在R语言的道路上又学到了一个新知识,记下来一起分享! 首先,grep函数可以像数据库查询一样对向量中的具有特定条件的元素进行查询! 其次,介绍几种R语言中 ...
2017-05-11机器学习中的范数规则化之 L0、L1与L2范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇 ...
2017-05-11Python里面的矩阵与矢量化运算 Python在数据挖掘、数据分析中用的很多。最基础的矩阵与矢量化运算需要掌握。 需要下载安装的包:Numpy Windows下cmd窗口输入以下命令即可成功安装 ...
2017-05-11R语言学习之矩阵 很多人是在线性代数课学的矩阵,当时什么问题都没有,除了一个问题:学习矩阵到底有什么用呢?矩阵是一个集合,它里面可以存放很多对象,比如一个行就是一个对象(或者说记录),每一个对象又 ...
2017-05-11R语言中的数组和列表 R语言中的数组与其它语言数组类似,它是一种高维的数据结构。维数过高运算会很不方便,所以用的很少,这里介绍是本着不落下任何知识点的目的。万一以后遇到了,虽然不方便,还是可以进行运 ...
2017-05-11SPSS:如何进行探索分析 探索分析是在对数据的基本特征统计量有初步了解的基础上,对数据进行的更为深入详细的描述性观察分析。它在一般描述性统计指标的基础上,增加了有关数据其他特征的文字与图形描述,显得 ...
2017-05-10SPSS分析技术:多重线性回归模型;极端值与多重共线性的识别与处理 如果拟合质量不好,可能存在的问题主要有以下两个方面: 极端值(强点)的影响。我们都知道,在线性回归分析中,自变量回归系数的确定主要 ...
2017-05-10SPSS详细操作:碰见有序分类资料,怎么办 经常听到有小伙伴刚学了武林秘籍之卡方检验,只要碰到分类资料就一通乱打,虽说有时候能赢几场,但是也有被打的鼻青脸肿的,还自言自语的说,招数没毛病呀!?事实上毛 ...
2017-05-10机器学习项目中的数据预处理与数据整理之比较 要点 在常见的机器学习/深度学习项目里,数据准备占去整个分析管道的60%到80%。 市场上有各种用于数据清洗和特征工程的编程语言、框架和工具。它们之间的 ...
2017-05-10SPSS语法的使用 通过使用强大的命令语言,您可以保存并自动执行许多常规任务。它还提供一些在菜单和对话框中没有的功能。大多数命令可以从菜单和对话框访问。但是,某些命令和选项只能通过命令语言使用。命令语 ...
2017-05-10如何将连续变量创建为变量 要创建分类变量inccat: 从数据编辑器窗口的菜单中选择: 转换> 可视离散化... 在初始的“可视离散化”对话框中,选择要为其创建新的离散化变量的刻度变量和/或 有序变 ...
2017-05-10R文本分类之RTextTools 古有曹植七步成诗,而RTextTools是一款让你可以在十步之内实现九种主流的机器学习分类器模型的文本分类开发包。 它集成了(或者说支持)如下算法相关的包: 支持向量机(Support Vec ...
2017-05-09Python中的线性代数运算 这里,为了熟悉Python语言的特性,我们采用一种最原始的方式去定义线性代数运算的相关函数。如果是真实应用场景,则直接使用NumPy的函数即可。 1.向量 创建一个向量 我们可以把P ...
2017-05-09使用Python进行线性回归 线性回归是最简单同时也是最常用的一个统计模型。线性回归具有结果易于理解,计算量小等优点。如果一个简单的线性回归就能取得非常不错的预测效果,那么就没有必要采用复杂精深的模型了 ...
2017-05-09干货 :用户细分的流程与方法 通常,用户细分既不是分析的不是起点也不是分析的终点,而是伴随某个特定的分析而存在。精准化营销,需要用户细分,譬如你拥有同城的数十万消费者的资料数据库,随时为有需要的同 ...
2017-05-09三张图读懂机器学习:基本概念、五大流派与九种常见算法 机器学习正在进步,我们似乎正在不断接近我们心中的人工智能目标。语音识别、图像检测、机器翻译、风格迁移等技术已经在我们的实际生活中开始得到了应用 ...
2017-05-09为什么你的数据分析那么好,图表做得那么烂 所有优秀的数据可视化依赖优异的设计,并非仅仅选择正确的图表模板那么简单。全在于以一种更加有助于理解和引导的方式去表达信息,尽可能减轻用户获取信息的成本。当 ...
2017-05-09数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21