SAS SQL select…into语句创建宏变量巧妙解决问题的总结 今在某SAS交流群看到这样一个问题如下: 有一个数据集a,有三个变量c,b,d(他们在数据集中的顺序也是如此),想新建一个变量var,并添加到b和d中间,怎 ...
2017-03-29优化算法—拟牛顿法之DFP算法 一、牛顿法 在博文“优化算法——牛顿法(Newton Method)”中介绍了牛顿法的思路,牛顿法具有二阶收敛性,相比较最速下降法,收敛的速度更快。在牛顿法中使用到了函数的二阶导数 ...
2017-03-28简单易学的机器学习算法—谱聚类(Spectal Clustering) 一、复杂网络中的一些基本概念 1、复杂网络的表示 在复杂网络的表示中,复杂网络可以建模成一个图,其中,V表示网络中的节点的集合,E表示的是连 ...
2017-03-28简单易学的机器学习算法—AdaBoost 一、集成方法(Ensemble Method) 集成方法主要包括Bagging和Boosting两种方法,随机森林算法是基于Bagging思想的机器学习算法,在Bagging方法中,主要通过对训练数据集 ...
2017-03-28简单易学的机器学习算法—集成方法(Ensemble Method) 一、集成学习方法的思想 前面介绍了一系列的算法,每个算法有不同的适用范围,例如有处理线性可分问题的,有处理线性不可分问题。在现实世界的生活中, ...
2017-03-28机器学习中的常见问题—损失函数 一、分类算法中的损失函数 在分类算法中,损失函数通常可以表示成损失项和正则项的和,即有如下的形式: 其中,L(mi(w))为损失项,R(w)为正则项。mi的具体形式如下 ...
2017-03-28SAS信用卡评分之变量分段 这一篇的文章来讲变量分段,在我之前的文章中,涉及到变量分段的代码是有的,早开始的等高等宽分啊,后面的基于基尼系数以及基于iv值对于字符变量的分类都有。链接在这,这!这!这!。 ...
2017-03-28sas字符变量基于iv值的最优分类 1.IV的用途 IV的全称是InformationValue,中文意思是信息价值,或者信息量。 我们在用逻辑回归、决策树等模型方法构建分类模型时,经常需要对自变量进行筛选。比如我们有2 ...
2017-03-27SAS中最常用的10个命令 SAS是乔伊平时学习中常用到的数据处理软件之一。在处理大批量数据时,SAS不能说太好用呢。SAS也是学习起来十分简单的一个软件,掌握一些基本的命令,就可以满足日常的数据处理需求。 ...
2017-03-27简单易学的机器学习算法—Gibbs采样 一、Gibbs采样概述 前面介绍的Metropolis-Hastings采样为从指定分布中进行采样提供了一个统一的框架,但是采样的效率依赖于指定的分布的选择,若是选择的不好,会使得接受率 ...
2017-03-27MATLAB技巧—sort和sortrows函数 1、sort函数 sort函数用于对数据进行排序,通过help sort命令,可以查找到sort函数的具体用法: Y = SORT(X,DIM,MODE) has two optional parameters. DIM selects a dimensio ...
2017-03-27机器学习算法实践—K-Means算法与图像分割 一、理论准备 1.1、图像分割 图像分割是图像处理中的一种方法,图像分割是指将一幅图像分解成若干互不相交区域的集合,其实质可以看成是一种像素的聚类过程。通常使用 ...
2017-03-27使用Python分析纽约出租车搭乘数据 在纽约,出租车分为两类:黄色和绿色。黄色出租(Yellow TAXI)车可以在纽约五大区(布朗克斯区、布鲁克林区、曼哈顿、皇后区、斯塔滕岛)内任何地点搭载乘客。绿色出租车(Gree ...
2017-03-27机器学习算法与Python实践之(四)支持向量机(SVM)实现 八、SVM的实现之SMO算法 终于到SVM的实现部分了。那么神奇和有效的东西还得回归到实现才可以展示其强大的功力。SVM有效而且存在很高效的训练算法, ...
2017-03-26机器学习算法与Python实践之(三)支持向量机(SVM)进阶 五、核函数 如果我们的正常的样本分布如下图左边所示,之所以说是正常的指的是,不是上面说的那样由于某些顽固的离群点导致的线性不可分。它是真的 ...
2017-03-26机器学习算法与Python实践之(二)支持向量机(SVM)初级 一、引入 支持向量机(SupportVector Machines),这个名字可是响当当的,在机器学习或者模式识别领域可是无人不知,无人不晓啊。八九十年代的时候 ...
2017-03-26机器学习算法与Python实践之(一)k近邻(KNN) 一、kNN算法分析 K最近邻(k-Nearest Neighbor,KNN)分类算法可以说是最简单的机器学习算法了。它采用测量不同特征值之间的距离方法进行分类。它的思想很简 ...
2017-03-26简单易学的机器学习算法—马尔可夫链蒙特卡罗方法MCMC 对于一般的分布的采样,在很多的编程语言中都有实现,如最基本的满足均匀分布的随机数,但是对于复杂的分布,要想对其采样,却没有实现好的函数,在这里, ...
2017-03-26Python基础—网络编程 在网络编程中主要是使用Socket(套接字)进行编程,套接字相当于应用程序访问下层网络的服务的接口,使用Socket可以是得不同主机之间进行通信,从而实现数据交换。 1、Socket工作方式 套 ...
2017-03-26python—时间与时间戳之间的转换 对于时间数据,如2016-05-05 20:28:54,有时需要与时间戳进行相互的运算,此时就需要对两种形式进行转换,在Python中,转换时需要用到time模块,具体的操作有如下的几种: 将 ...
2017-03-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21