优化算法—粒子群算法(PSO) 一、粒子群算法的概述 粒子群算法(PSO)属于群智能算法的一种,是通过模拟鸟群捕食行为设计的。假设区域里就只有一块食物(即通常优化问题中所讲的最优解),鸟群的任务是找到这个食 ...
2017-03-22数据结构和算法—用动态规划求解最短路径问题 在利用动态规划求解的过程中值得注意的就是是否包含最优子结构,简单来讲就是一个问题的最优解是不是包含着子问题的最优解。利用求解子问题的最优解最后得到整个问 ...
2017-03-22数据结构和算法—动态规划 我一直最想做的就是机器学习,所以也都是在报机器学习的岗位,在BAT三家公司中,其实还是要讲百度吧,因为阿里在一面的时候就挂了,给我的理由是我投错了岗位(据面试官讲我应该去投算 ...
2017-03-22简单易学的机器学习算法—Rosenblatt感知机的对偶解法 一、Rosenblatt感知机回顾 在博文“简单易学的机器学习算法——Rosenblatt感知机”中介绍了Rosenblatt感知机的基本概念。Rosenblatt感知机是针对线性可分 ...
2017-03-21简单易学的机器学习算法—基于密度的聚类算法DBSCAN 一、基于密度的聚类算法的概述 我想了解下基于密度的聚类算法,熟悉下基于密度的聚类算法与基于距离的聚类算法,如K-Means算法之间的区别。 基于密度的 ...
2017-03-21论文中的机器学习算法——基于密度峰值的聚类算法 下面还是主要来谈谈论文的主要思想。 算法的主要思想思想 在聚类算法中主要有这样几种: 划分的方法,如K-Means 层次的方 ...
2017-03-21简单易学的机器学习算法—非线性支持向量机 一、回顾 介绍了支持向量机的基本概念,线性可分支持向量机的原理以及线性支持向量机的原理,线性可分支持向量机是线性支持向量机的基础。对于线性支持向量机,选择 ...
2017-03-21简单易学的机器学习算法—线性支持向量机 一、线性支持向量机的概念 线性支持向量机是针对线性不可分的数据集的,这样的数据集可以通过近似可分的方法实现分类。对于这样的数据集,类似线性可分支持向量机 ...
2017-03-21简单易学的机器学习算法—线性可分支持向量机 一、线性可分支持向量机的概念 线性可分支持向量机是用于求解线性可分问题的分类问题。对于给定的线性可分训练数据集,通过间隔最大化构造相应的凸二次优化问题可 ...
2017-03-21简单易学的机器学习算法—支持向量机 支持向量机(Support Vector Machines, SVM)被公认为比较优秀的分类模型,有很多人对SVM的基本原理做了阐述,我在学习的过程中也借鉴了他们的研究成果,在我介绍基本 ...
2017-03-20机器学习-回归模型-欠拟合和过拟合 1. 什么是欠拟合和过拟合 先看三张图片,这三张图片是线性回归模型 拟合的函数和训练集的关系 第一张图片拟合的函数和训练集误差较大,我们称这种情况为欠拟合 第二 ...
2017-03-20模式识别、机器学习、数据挖掘当中的各种距离总结 在做分类时常常需要估算不同样本之间的相似性度量(SimilarityMeasurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么样的方法计算距 ...
2017-03-20用十张图解释机器学习的基本概念 在解释机器学习的基本概念的时候,我发现自己总是回到有限的几幅图中。以下是我认为最有启发性的条目列表。 1. Test and training error:为什么低训练误差并不总是一件 ...
2017-03-20从曲线拟合问题窥视机器学习中的相关概念 一直徘徊在机器学习的边缘未敢轻易造次并畏惧其基本原理思想,从每一本厚厚的参考资料中都可以看出机器学习是一门跨越概率论、决策论、信息论以及最优化的学科的综合学 ...
2017-03-20在MATLAB中进行基于SVM的数据分析 MATLAB除了可以被用来进行信号处理之外,还可以用来完成一些数据挖掘任务。而说到数据挖掘,你脑海里一定会闪现过许多熟悉的算法,例如决策树、朴素贝叶斯、逻辑回归,以及支 ...
2017-03-20Python自然语言处理:词干、词形与MaxMatch算法 自然语言处理中一个很重要的操作就是所谓的stemming 和 lemmatization,二者非常类似。它们是词形规范化的两类重要方式,都能够达到有效归并词形的目的,二者既 ...
2017-03-18在R中使用支持向量机(SVM)进行数据挖掘(下) 第二种使用svm()函数的方式则是根据所给的数据建立模型。这种方式形式要复杂一些,但是它允许我们以一种更加灵活的方式来构建模型。它的函数使用格式如下(注意 ...
2017-03-18在R中使用支持向量机(SVM)进行数据挖掘(上) 在R中,可以使用e1071软件包所提供的各种函数来完成基于支持向量机的数据分析与挖掘任务。请在使用相关函数之前,安装并正确引用e1071包。该包中最重要的一个函 ...
2017-03-18Python机器学习之Logistic回归 大数据时代,数据犹如一座巨大的金矿,等待我们去发掘。而机器学习和数据挖掘的相关技术,无疑就是你挖矿探宝的必备利器!工欲善其事,必先利其器。很多初涉该领域的人,最先困惑 ...
2017-03-18牛顿法解机器学习中的Logistic回归 这仍然是近期系列文章中的一篇。在这一个系列中,我打算把机器学习中的Logistic回归从原理到应用详细串起来。最初我们介绍了在Python中利用Scikit-Learn来建立Logistic回归分 ...
2017-03-18Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29