SPSS最优尺度:分类主成分分析 一、分类主成分分析(分析-降维-最优尺度) 1、概念:此过程在减少数据维数的同时量化分类变量。分类主成份分析也表示为缩写词CATPCA(代表categorical principal com ...
2017-11-05Python Nose框架编写测试用例方法 本文主要介绍nose框架编写自动化测试用例的方法。 2. Nose编写测试用例方法 nose会自动识别源文件,目录或包中的测试用例。 任何匹配testMatch正则表达式(默认为(?:^|[\\b_\\ ...
2017-11-05基于大数据分析的异常检测方法及其思路实例 1 概述 随着人类社会信息化程度的不断深入,信息系统产生的数据也在呈几何级数增长。对这些数据的深入分析可以得到很多有价值的信息。由于数据量太大以及数据属性 ...
2017-11-05统计学方法与数据分析学习笔记1 用于质量改进和再造工程的统计工具、技术和方法: 直方图 数值描述量(均值、标准差、比例等) 散点图 线图(在散点图中用线连接各点) 控制图:(样本均值 ...
2017-11-04大数据和BI商业智能有何区别?有何相关 大数据 ≠BI商业智能,大数据也不是传统商业智能的简单升级。 1、大数据和BI两者的区别 BI(BusinessIntelligence)即商业智能,它是企业数据化管理的一整套的方案, ...
2017-11-04结构思维—用结构化思考让数据分析到达问题的底层 对数据分析而言,不仅仅是直接回答问题,同时还需要针对问题,不断去探求,不断去深入。当探求问题的时候,可以用到图表可以用到统计,不过图表和统计的 ...
2017-11-04如何搭建企业报表管理系统 进入21世纪信息化时代,我们的生活、工作都发生了极大的变化,企业的工作模式亦是如此,从前,领导想了解企业的经营情况都是通过手工制作的excel表格,而现在,众多企业 ...
2017-11-04数据分析方法(一):对比与对标 对比是数据分析最基本的方法,通过对比识别数据差异。但是对比有得失。在分析过程中,对比得当可获得精准结论,但对比分析也存在陷阱,比如某产品近期销售数据在下滑,想 ...
2017-11-04举例简单讲解Python中的数据存储模块shelve的用法 shelve类似于一个key-value数据库,可以很方便的用来保存Python的内存对象,其内部使用pickle来序列化数据,简单来说,使用者可以将一个列表、字典、或者用户 ...
2017-11-03SPSS复杂样本:复杂样本统计过程 一、复杂样本频率(分析-复杂抽样-频率) “复杂样本频率”过程可以为所选变量生成频率表并显示单变量统计。您还可以按子组请求统计量,子组由一个或多个分类变量 ...
2017-11-03大数据时代 | 数据分析方法及理论详解 1 数据分析前,我们需要思考 像一场战役的总指挥影响着整个战役的胜败一样,数据分析师的思想对于整体分析思路,甚至分析结果都有着关键性的作用。 2 分析问题和解 ...
2017-11-03单因素方差分析(aov)-R版本 R版本的方差分析 #做方差分析有三个假设,需要提前进行检验。1.每个处理效应和随机误差是可加的。2.正态独立性,检验误差应该是正态分布的。3.方差齐次性。水平间的方差应该相等 ...
2017-11-03SPSS回归分析:两阶最小二乘法 一、两阶最小二乘法(分析-回归-两阶最小二乘法) 标准线性回归模型假设因变量中的误差与自变量不相关。如果不是这种情况(例如,变量间的关系是双向的),则使用普 ...
2017-11-02SPSS分类分析:决策树 一、决策树(分析-分类-决策树) “决策树”过程创建基于树的分类模型。它将个案分为若干组,或根据自变量(预测变量)的值预测因变量(目标变量)的值。此过程为探索性和证 ...
2017-11-02SPSS缺失值:缺失值分析 一、缺失值: 具有缺失值的个案会引发严重的问题,因为典型的建模过程会简单地从分析中丢弃这些个案。如果存在少量缺失值(大约低于个案总数的5%),且这些值可以被认为随 ...
2017-11-02SPSS数据准备:数据验证 一、数据准备: 随着计算系统能力的提高,对信息的需要成比例增长,导致收集的数据越来越多—出现更多的个案、更多的变量以及更多的数据输入错误。这些错误会损害作为数据 ...
2017-11-02SPSS时间序列:应用时间序列模型 一、应用时间序列模型(分析-预测-应用模型) “应用时间序列模型”过程从外部文件加载现有的时间序列模型,并将它们应用于活动数据集。使用此过程,可以在不重新 ...
2017-11-02SPSS时间序列:拟合优度测量 SPSS时间序列:拟合优度测量 一、拟合优度测量 1、固定的R方.将模型的平稳部分与简单均值模型相比较的测量。当具有趋势或季节性模式时,该度量适用于普通R方。固 ...
2017-11-01R语言中的方差分析 方差分析:当包含的因子是解释变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析法称作方差分析(ANOVA)。 install.packages(c(\'multcomp\', \'gplots\', \'car\', \'HH ...
2017-11-01方差分析:不同组间的差异真的显著吗 在数据分析中,按照具体维度将数据分组进行组间比较是十分常见的,例如在零售业态中,按照性别、城市、收入水平将消费者进行分组进行对比分析。看似简单,其实这其中经常伴 ...
2017-11-01《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21