python读写文件,和设置文件的字符编码比如utf-8 一. Python打开文件代码如下: f=open(\"d:\\test.txt\",\"w\") 说明: 第一个参数是文件名称,包括路径; 第二个参数是打开的模式mode ...
2017-07-26【Python开发】Lambda表达式使用 lambda只是一个表达式,函数体比def简单很多。 lambda的主体是一个表达式,而不是一个代码块。仅仅能在lambda表达式中封装有限的逻辑进去。 lambda表达式是 ...
2017-07-26Python:itertools模块 itertools模块包含创建有效迭代器的函数,可以用各种方式对数据进行循环操作,此模块中的所有函数返回的迭代器都可以与for循环语句以及其他包含迭代器(如生成器和生成器表达式)的函数 ...
2017-07-25机器学习之深度学习 本文基于台大机器学习技法系列课程进行的笔记总结。 一、主要内容 topic 1 深度神经网络结构 从类神经网络结构中我们已经发现了神经网络中的每一层实际上都是对前一层进行的特 ...
2017-07-25机器学习之径向基神经网络 本文基于台大机器学习技法系列课程进行的笔记总结。 主要内容如下图所示: 首先介绍一下径向基函数网络的Hypothesis和网络的结构,然后介绍径向基神经网络 ...
2017-07-25机器学习基本原理和概念 1. VC dimension(VC维,非常重要的概念) 能够shutter 二分类问题的上限。也是衡量模型复杂度的工具(类似自由度的概念)。之所以这个概念比较重要是它能够解释为什么机器能够学习 ...
2017-07-25机器学习中的各种相似性、距离度量 本文主要关注点在于各个距离、相似度之间的优缺点,及使用时候的注意事项。 1. 闵可夫斯基距离 基本认识 该距离最常用的 p 是 2 和 1, 前者是欧几里得距离(Euc ...
2017-07-25聚类算法实践一层次聚类、K-means聚类 所谓聚类,就是将相似的事物聚集在一 起,而将不相似的事物划分到不同的类别的过程,是数据分析之中十分重要的一种手段。比如古典生物学之中,人们通过物种的形貌特征将其 ...
2017-07-25【机器学习】最小中值平方法 最小中值平方法 最小中值平方法是通过求解下面的非线性最小问题来估计参数的 LMedS记录的是所有样本中,偏差值居中的那个样本的偏差,这种方法对错误匹配和外点有很好的 ...
2017-07-24【机器学习】梯度、Hessian矩阵、平面方程的法线以及函数导数的含义 想必单独论及“ 梯度、Hessian矩阵、平面方程的法线以及函数导数”等四个基本概念的时候,绝大部分人都能够很容易地谈个一二三,基本没有问 ...
2017-07-24【机器学习】半监督学习几种方法 1.Self-training algorithm(自训练算法) 这个是最早提出的一种研究半监督学习的算法,也是一种最简单的半监督学习算法. 2.Multi-view algorithm(多视角算法) 一般多 ...
2017-07-24机器学习模型评价(Evaluating Machine Learning Models)-主要概念与陷阱 本文主要解释一些关于机器学习模型评价的主要概念,与评价中可能会遇到的一些陷阱。如训练集-验证集二划分校验(Hold-out validation) ...
2017-07-24Python的星号(*、**)的作用 1. 函数的可变参数 当函数的参数前面有一个星号*的时候表示这是一个可变的位置参数,两个星号**表示是可变的关键字参数。 #!env python #coding=utf-8 # def foo(*args, **kwar ...
2017-07-24机器学习之Logistic回归与Python实现 logistic回归是一种广义的线性回归,通过构造回归函数,利用机器学习来实现分类或者预测。 一 Logistic回归概述 Logistic回归的主要思想是,根据现有的数据对分类边 ...
2017-07-24机器学习之朴素贝叶斯(NB)分类算法与Python实现 朴素贝叶斯(Naive Bayesian)是最为广泛使用的分类方法,它以概率论为基础,是基于贝叶斯定理和特征条件独立假设的分类方法。 一、 概述 1.1 简介 朴 ...
2017-07-23机器学习之决策树(ID3)算法与Python实现 机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结 ...
2017-07-23数据挖掘的基本概念:数据库、数据仓库、机器学习,统计学 “数据挖掘“(Data Mining)又被称为“数据中的知识发现”(KDD),顾名思义,也就是通过数据清理、数据集成、数据选择、数据变换、数据挖掘、模式评估 ...
2017-07-23机器学习之k-近邻(kNN)算法与Python实现 k-近邻算法(kNN,k-NearestNeighbor),是最简单的机器学习分类算法之一,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标 ...
2017-07-23样本统计量与总体的关系,抽样分布的概念性质 本文对抽样分布的概念、无偏差和最小偏差等性质,以及中心极限定理和样本比例的抽样分布进行总结。 1 抽样分布基本概念 参数(parameter):参数是对总 ...
2017-07-23图形和数值的数据集描述方法 图形方法对数据集的描述 1. 条形图(bar graph) 条形图一般横向表示类别(class),纵向表示该类别所对应的类别频率(class frequency)。 2. 饼状图(pie graph) 饼状图 ...
2017-07-23数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21