机器学习实现与分析之四(广义线性模型) 指数分布族 首先需要提及下指数分布族,它是指一系列的分布,只要其概率密度函数可以写成下面这样的形式: 一般的很多分布(如高斯分布,泊松分布,二项 ...
2017-03-15斯坦福机器学习实现与分析之二(线性回归) 回归问题提出 首先需要明确回归问题的根本目的在于预测。对于某个问题,一般我们不可能测量出每一种情况(工作量太大),故多是测量一组数据,基于此数据去预 ...
2017-03-15梯度下降法分析 梯度下降法的基本思想是函数沿着其梯度方向增加最快,反之,沿着其梯度反方向减小最快。在前面的线性回归和逻辑回归中,都采用了梯度下降法来求解。梯度下降的迭代公式为: \\(\\begin{aligned} ...
2017-03-15批量梯度下降与随机梯度下降 下面的h(x)是要拟合的函数,J(theta)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(theta)就出来了。其中m是训练集的记录条数,j是参数的个数。 ...
2017-03-15从导数的物理意义理解梯度下降 机器学习中常会用随机梯度下降法求解一个目标函数L(Θ)的优化问题,并且常是最小化的一个优化问题: minL(Θ) 我们所追求的是目标函数能够快速收敛或到达一个极小值点。而随机梯 ...
2017-03-155个开源Python库,点亮你的机器学习之路 机器学习令人兴奋,但实际操作却很困难也很复杂。它涉及到很多手动提升,如集合工作流,设置数据源,以及在内部部署与云部署的资源之间切换等。 Python 是一款强大的 ...
2017-03-14机器学习常用算法(LDA,CNN,LR)原理简述 1.LDA LDA是一种三层贝叶斯模型,三层分别为:文档层、主题层和词层。该模型基于如下假设: 1)整个文档集合中存在k个互相独立的主题; 2)每一个主题是词上的多项 ...
2017-03-14机器学习中使用的神经网络 这一小节介绍随机梯度下降法(stochastic gradient descent)在神经网络中的使用,这里首先回顾了第三讲中介绍的线性神经网络的误差曲面(error surface),如下图所示。线性神经网络对 ...
2017-03-14一、概述 优点:在数据少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 二、原理 三、文档分类 A,B,C,D..为文档中单词。假设总词汇只有A,B,C,D四种。训练样 ...
2017-03-14机器学习实战之SVD 1. 奇异值分解 SVD(singular value decomposition) 1.1 SVD评价 优点: 简化数据, 去除噪声和冗余信息, 提高算法的结果 缺点: 数据的转换可能难以理解 1.2 SVD应用 (1) 隐性语义索引(latent ...
2017-03-14机器学习实战之PCA 1. 向量及其基变换 1.1 向量内积 (1)两个维数相同的向量的内积定义如下: 内积运算将两个向量映射为一个实数. (2) 内积的几何意义 假设A\\B是两个n维向量, n维向量可以等价表 ...
2017-03-14机器学习实战之Apriori 1. 关联分析 1.1 定义 关联分析是一种在大规模数据上寻找物品间隐含关系的一种任务.这种关系有2种形式:频繁项集和关联规则. (1) 频繁项集(frequent item sets): 经常出现在一起的物品 ...
2017-03-14SPSS中两种重复测量资料分析过程的比较 在SPSS中,有两个过程可以对重复测量资料进行分析:一种是一般线性模型的重复度量;一种是混合线性模型,对于同样的数据资料,使用两种过程分析出的内容不大一样,注意 ...
2017-03-13数据分析中的基本指标 1.平均数: 是描述一组数据集中趋势的指标,有很多种平均数,如:算数平均数,几何平均数,调和平均数,加权平均数,平方平均数,指数平均数等。 最常用的是算数平均数 平均数 ...
2017-03-13数据分析中的变量分类 数据分析工作每天要面对各种各样的数据,每种数据都有其特定的含义、使用范围和分析方法,同一个数据在不同环境下的意义也不一样,因此我们想要选择正确的分析方法,得出正确 ...
2017-03-13R语言之数据处理 一、向量处理 1.选择和显示向量 data[1] data[3] data[1:3] data[-1]:除第一项以外的所有项 data[c(1,3,4,6)] data[data>3] data[data<5|data>7]:小于5或大于7的所有项 which(data == max ...
2017-03-13离群值的判断与处理 我们在数据分析的时候,经常会碰到某些数据远远大于或小于其他数据,这些明显偏离的数据就是离群值,也叫奇异值、极端值。 离群值产生的原因大致有两点: 1.总体固有变异的极端表现,这 ...
2017-03-13SPSS数据分析—多维偏好分析(MPA) 之前的主成分分析和因子分析中,收集的变量数据都是连续型数值,但有时会碰到分类数据的情况,我们知道最优尺度变换可以对分类变量进行量化处理,如果将这一方法和主 ...
2017-03-13对应分析方法与对应图解读方法-—七种分析角度 对应分析是一种多元统计分析技术,主要分析定性数据Category Data方法,也是强有力的数据图示化技术,当然也是强有力的市场研究分析技术。 这里主要介绍大 ...
2017-03-13均值、方差、标准差及协方差、协方差矩阵详解 一、统计学基本概念:均值、方差、标准差 统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式 ...
2017-03-12以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30