主成分分析(PCA)特征选择算法详解 1. 问题 真实的训练数据总是存在各种各样的问题: 1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显 ...
2017-03-12线性回归与梯度下降算法 1.1线性回归 在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析。这种函数是一个或多个称为 ...
2017-03-12机器学习基础—梯度下降法(Gradient Descent) 梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是 ...
2017-03-12机器学习:决策树(Decision Tree) 决策树(decision tree)是一种基本的分类与回归方法。在分类问题中,它可以认为是if-then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。在学习时,利 ...
2017-03-11机器学习中的降维算法:ISOMAP & MDS 降维是机器学习中很有意思的一部分,很多时候它是无监督的,能够更好地刻画数据,对模型效果提升也有帮助,同时在数据可视化中也有着举足轻重的作用。 一说到降维,大家第 ...
2017-03-11机器学习算法常用指标总结 考虑一个二分问题,即将实例分成正类(positive)或负类(negative)。对一个二分问题来说,会出现四种情况。如果一个实例是正类并且也被 预测成正类,即为真正类(True positive), ...
2017-03-11【机器学习经典算法源码分析系列】-- 线性回归 一、单变量线性回归: 1.数据集可视化 2.求解模型参数 对于线性回归模型,有两种方法可以求解模型参数。 1) 梯度下降法 将代价函数代入展开: Matlab代码实 ...
2017-03-11机器学习中特征选择概述 1. 背景 1.1 问题 在机器学习的实际应用中,特征数量可能较多,其中可能存在不相关的特征,特征之间也可能存在相关性,容易导致如下的后果: (1) 特征个数越多,分析特征、训练 ...
2017-03-11机器学习入门:K-近邻算法 先来一个简单的例子,我们如何来区分动作类电影与爱情类电影呢?动作片中存在很多的打斗镜头,爱情片中可能更多的是亲吻镜头,所以我们姑且通过这两种镜头的数量来预测这部电影的主题 ...
2017-03-11SPSS中如何进行分列 首先,只要是字符型的都要新生成一个字符串的变量(这里就生成的是c变量,a5表示这列字符的长度为5,科根据需要设置,程序如下: string c (a5). 其次根据需要用到substr函数,先看看 ...
2017-03-10数据分析和个人提升 数据分析,从工作技能的角度,除了业务直接相关的,也有相对比较通用的环节或技能单元,例如前面提到的目标确认、数据分解、归纳比较等,此外有时候还会涉及到最优化、数据图形化以及关系数 ...
2017-03-104大分析维度,快速解锁App用户数据分析 在APP运营过程中,会衍生出大量的数据,通过数据分析提取有用的信息,能更好地把控APP的运营态势,并进一步指导APP运营。 APP数据来源比较广泛,但总的来说可归纳为两 ...
2017-03-10简单的利用“切片器”进行数据分析 切片器』是2010版本开始新加的功能,通过切片器可以更好的进行数据筛选,更直观的展示给他人。 ps:要是用切片器进行数据分析,必须是格式化后的数据或透视表数据,否则无 ...
2017-03-10数据分析报告的7个基本步骤 一、为什么要做一份数据报告 你是一个在校学生,上着自己喜欢或不喜欢的课,闲来无事,你打开知乎,看到了数据分析话题,你下定决心要成为一个数据分析师,你搞来一堆学习资料和 ...
2017-03-102017年数据分析的十大趋势解读 1.可视化 可视化会向整个信息产业链发展,不再仅仅限于数据分析了,而且新技术的出现,也将会加速发展。 2.规模车向组合发展 语文学的进步把大数据焦点从规模转向组合式 ...
2017-03-10企业用户如何玩转大数据,赢在未来 传统的数据治理在大数据时代面临着大量数据的接入、大量数据的存储和快速灵活处理的三方面问题,这一期我们来聊聊如何正确的思考和解决这三个问题。 大量数据接入 大量 ...
2017-03-09浅谈以史为鉴与数据分析应用 数据本身就离不开历史,人们总是利用来自于历史的客观数据,进行不断的分析和总结,并以此尽可能的预测未来,作为下一步行动和决策的依据,可以说是“以史为鉴”。 当然了,在没 ...
2017-03-09关联规则推荐算法的原理及实现 关联规则用来发现数据间潜在的关联,最典型的应用是电商网站的购物车分析。本文将通过一个简单的例子来说明关联规则中各个术语的含义以及具体的计算方法。 这是一些用户的购物 ...
2017-03-09数据分析助力促销的秘籍 浙江温州,浙江温州,江南皮革厂,江南皮革厂,倒闭啦!倒闭啦!好了,不用再说大家脑子里也自动带入了王八蛋老板黄鹤带着小姨子跑路的旋律。 然而事实上,即使没有吃喝嫖赌欠下3.5 ...
2017-03-09SPSS分析技术:统计图的制作;可视化效果还是很强大的 统计图 如何高效地呈现数据分析结果是各行各业的工作者都会遇到的问题。统计图可以用点的位置,线段的升降,直条的长短或面积的大小等方法表达统计资料 ...
2017-03-09《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21