SPSS分析技术:因子分析;调查问卷的效度分析 在以多个变量测量事物性质的过程中,经常出现多个变量交叉与重叠的情况。例如,在大学课程情况的问卷调查中,我们可以设置几个不同的问题来测试教师的课件制作情况 ...
2017-03-02运营数据分析须掌握的十个经典方法 眼花缭乱的东西很多,真正派上用场的,却不见得是那些看起来炫酷的。很多方法朴实无华,却解决大量的问题。下面十个方法都是我这么多年做互联网运营分析时一定会用到的最经典 ...
2017-03-01数据测量与分析:入门完全指南 在这篇入门完全指南中,我们将探讨分析学中一些基本的方法,以及用户体验测量与分析中的日常工作和交付物。我们也将列举一些常用工具、相关书籍,帮UX 从业者更好地学会收集和分 ...
2017-03-01数据挖掘方法功能和聚类分析案例 一、数据挖掘的常用方法 利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等,它们分别从不同的角度对数据进行 ...
2017-03-01用户调研、竞品分析、数据分析、行业分析4个方法,轻松挖掘产品需求 一般产品的需求来源,除了老板和其他同事(运营或市场)的业务需求,还可以来自以下几个方面: 1.用户调研 用户调研的手法有很多, ...
2017-03-01数据在四个层面上的价值思考 1、思考一下,数据是什么? “掌握数据就掌握一切”,已经成为大部分互联网公司的基本认识,你只要有用户数据,行为数据,关系链数据,就可以在此基础上衍生出很多新的玩法,新 ...
2017-03-01SPSS分析技术:Pearson相关、Spearman相关及Kendall相关 通过文章(点击蓝字即可回顾阅读):数据分析技术:数据关联性分析综述,我们知道数据的关联性分析可以分为两个大类:相关性分析和回归分析。根据数据种 ...
2017-02-28SPSS分析技术:偏相关分析 相关分析是研究两个变量共同变化的密切程度,但有时出现相关的两个变量又同时与另外的一个变量相关,在这三个变量中,有可能只是由于某个变量充当了相关性的中介作用,而另外的两个变 ...
2017-02-28SPSS分析技术:低测度数据的相关性分析 如果遇到低测度数据,需要判断它与低测度数据或高测度数据之间的相关性,需要根据数据类型以及数据组合之间的关系来决定分析方法,如下图所示: 今天,我们介绍低 ...
2017-02-28SPSS分析技术:线性回归分析 相关分析可以揭示事物之间共同变化的一致性程度,但它仅仅只是反映出了一种相关关系,并没有揭示出变量之间准确的可以运算的控制关系,也就是函数关系,不能解决针对未来的分析与预 ...
2017-02-28SPSS应用之非参数检验 统计学的假设检验可以分为参数检验和非参数检验,参数检验是根据一些假设条件推算而来,当这些假设条件无法满足的时候,参数检验的效能会大打折扣,甚至出现错误的结果,而非参数检验通常 ...
2017-02-28R语言中的缺失值处理 在处理一些真实数据时,样本中往往会包含缺失值(Missing values)。我们需要对缺失值进行适宜的处理,才能建立更为有效的模型,使得后续预测分析能有更小的偏差。本文将罗列不同的缺失值处 ...
2017-02-27R语言不平衡数据分类指南 目前我们发展出了不少机器学习算法来对数据建模,基于数据进行一些预测已经不再是难事。不论我们建立的是回归或是分类模型,只要我们选择了合适的算法,总能得到比较精确的结果。然而 ...
2017-02-27使用R写入Excel方法总结 数据部门在和公司其他部门打交道过程中,将数据写入Excel文件经常会涉及到(从各种临时需求到日常数据报告Dashboard等等)。 通过Rdocumentation查询write to excel,会有15个R包、2 ...
2017-02-27SPSS分析技术:描述统计;了解手中的数据,从这里开始 无论是总体数据还是样本数据,描述统计都是了解它们的第一步,因为了解数据是进行进一步数据分析的基础。在统计基础文章中介绍过,描述数据可以从三个维度进 ...
2017-02-27SPSS统计分析案例:对应分析 两个分类变量间的关系,无法直接使用常见的皮尔逊相关系数来表述,多采用频数统计、交叉表卡方检验等过程进行处理,当分类变量的取值较多时,列联表频数的形式就变得更为复杂,很难 ...
2017-02-27SPSS常见函数及使用方法 SPSS函数是一个常用程序,并且利用一个或多个自变量(参数)来执行。每个SPSS函数均有一个关键名称(keywordname),且绝不能写错。 通常,函数的格式为:函数名称(自变量,自变量 ...
2017-02-27R语言中离群值的识别、描述、绘制与移除 统计学中离群值被定义为离开大部分观测较远的样本点,多数是由于测量误差而产生。因此,数据分析中离群值的识别和移除(如有必要)是很重要的一个步骤。 鉴 ...
2017-02-26教你如何用R进行数据挖掘 R是一种广泛用于数据分析和统计计算的强大语言,于上世纪90年代开始发展起来。得益于全世界众多 爱好者的无尽努力,大家继而开发出了一种基于R但优于R基本文本编辑器的R Studio(用户 ...
2017-02-26使用R进行倾向得分匹配(PSM) 根据维基百科,倾向得分匹配(PSM)是一种用来评估处置效应的统计方法。广义说来,它将样本根据其特性分类,而不同类样本间的差异就可以看作处置效应的无偏估计。因此,PSM不仅 ...
2017-02-26统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22